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Abstract. We discuss the relation between predictability and the sensitive dependence on initial 
canditiom in turbulent flows. The dependence .on the Reynolds number of the maximum 
Lyapunov exponent of the flow is evaluated within the multifractal model. The temporal 
intermittency of the degree of chaos is found to localize on the degrees of frredom corresponding 
to high wavenumbers. We discuss the conseqnences for the mechanism for the growth of small 
perturbations. We show that intermittency causes long tails in the diseibution of the predictability 
times both in the velocity field and in a passively advected %+field, though there is no simple 
relation between these two times. Numerical evidence of this picture is provided withii the 
framework of a cascade model for velocity and tempmure fields in fully developed turbulence. 

1. Introduction 

Prediction is Bn old and classical problem in fluid mechanics. According to Laplace (1814), 
it is, in principle, possible to predict the state of a system at any time t ,> 0, if one knows 
its evolution laws and the initial condition. After tl?e contribution of Poincar6, and more 
recently of Lorenz (1963), it is now weU understood that predictability has severe limitations 
in the presence of deterministic chaos because of the exponential divergence of the distance 
between two initially close trajectories. 

Typically, in nonlinear systems an uncertainty &(CO)  on the state of the system at time 
f = 0 increases as 

I&~(t)l N I&c(o)leA'. (1.1) 

The growing rate A is called the maximum Lyapunov exponent (Fienettin et al 1980% b). 
Consequently, if [Sz(O)[ = 80 and one accepts S,, as the maximum tolerance on the 
knowledge of the state of the system (1.1) implies that the system is predictable up to a 
time ~' . 

(1.2) 

Equation (1.2) shows that the predictubilify time is proportional to A-'. . In  fact, the 
dependence on the precision of 'the initial and final time is very weak, only logarithmic 
and can be neglected. 
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Equation (1.2) gives only an approximate tint answer to the problem of prediction since 
it does not take into account some important features of chaotic systems: 

(i) In general there are fluctuations in the degree of chaos, so that beyond (1.1) it 
is necessary to introduce the effective Lyapunov exponent y&) (Eckmann and Procaccia 
1986, Paladin et a1 1986): 

IW + d l  = IWr)l ~ X P I Y ~ ~ )  tl (1.3) 

where y,(r) depends on t and 5. 
(ii) Equation (1.1) neglects the possible influence of the many degrees of freedom. In 

some problems it is rather natural to have an uncertainty at the initial time only on some 
degrees of freedom while the main interest, as time proceeds, is focused on other degrees 
of freedom. For example, in weather forecasting there are errors on the small scale of the 
initial state while one wishes to know the large-scale behaviour. 

(iii) Equations (1.1) and (1.3) are only valid for small SO. 
In this paper we study the statistics of the predictability time T and its relation with the 

intermittency of the degree of chaos in turbulence and chaotic dynamical systems. 
In section 2 we briefly review the basic concepts for the characterization of the effective 

Lyapunov exponent in terms of the generalized Lyapunov exponents penzi et a1 1985). 
In section 3 we study a model, whose evolution laws are given by a set of ordinary 

differential equations, the so-called shell model (Yamada and Ohkitani 1987, 1988), which 
mimics many of the physically relevant features of turbulence. In section 4, introducing a 
perturbation on the small scale, we look at the ‘butterfly effect’, i.e. the cascade and growth 
of a perturbation from small to large scales. 

In section 5 we compute, in the kamework of the multifractal model of turbulence 
(Benzi et nl 1984, Parisi and Frisch 1985), the scaling of A and p, related to the average 
and variance of y respectively, as a function of the Reynolds number Re. The scaling 
exponents are obtained from the eddy turnover time and the Kolmogorov length. These 
results are compared with numerical simulation of the shell model. 

In section 6, we discuss the probability distribution of T in the shell model for different 
Re and the relation with the intermittency. By considering this relation in a more general 
context we show that the main qualitative features are not peculiar to the particular chosen 
system. For a weakly intermittent system, i.e. small fluctuations of y .  the probability 
distribution of T is roughly Gaussian while for strong intermittency it exhibits long tails. 

The ‘standard’ theory of predictability in fully developed turbulence (Leith and 
Kraichnan 1972, L a y  1973) gives, neglecting intermittency, 

. 

T - To (1.4) 

where To is the typical eddy turnover time at large scale. This is in strong disagreement 
with our result showing that T decreases for increasing Re. We discuss this point in 
section 7. Finally, in section 8 studykg suitable shell models, we present the result for the 
predictability of a passive scalar field 8, e.g. the temperature. In this case, there are two 
predictability times: Tu for the velocity field and T’ for the passive scalar. In general, 
T e  is smaller than TU and, sometimes, one may have a long TU, corresponding to laminar 
situation for the velocity field, with Te close to its typical value. This phenomenon is 
similar to ‘Lagrangian chaos’ where chaotic motion of a test particle is observed even in 
the absence of Eulerian turbulence ( k e f  1984, Crisanti ef a1 1991). 
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2. Dynamical intermittency: general features 

One of the most relevant features of chaotic systems is their unpredictability in the temporal 
evolution. The distance between two trajectories starting at close initial conditions increases 
exponentially in time. In general, the exponential rate of growth depends on the initial time. 
One can observe regular motion for long times, interrupted by randomly distributed bursts 
of strong chaotic behaviour. This phenomenon is called temporal intermittency. The degree 
of chaos is usually measured by the typical exponential rate of growth, given by the largest 
Lyapunov exponent. It measures the growth of a small disturbance after a very long time. 
However, finite-time fluctuations may be very important. 

A quantitative description of interniittency can be obtained from the generalized 
Lyapunov exponents L(q)  which  take^ into account the finite-time properties of the flow 
(Fujisaka 1983, Benzi et al  1985). Let us consider a generic dynamical system described 
by the set n of~differential equations 

&(t)  = F[r, t ] .  (2.1) 

The response of the system to a perturbation SF(?) of its state at time T after a time t ,  is 
measured by the error growth rate 

where z is the tangent vector whose evolution is given by 

i ( t )  = A(t)z(t) (2.3) 

obtained by linearizing the evolution equation (2.1) along the trajectory so). The matrix 
A is the Jacobian matrix of (2.1), Ai, = aFi/axj.  

By definition, the maximal Lyapunov exponent is 

(2.4) 
I 

A = lim -(ln R,(t)) 
t+m t 

where the angular brackets denote the time average along the trajectory. The Oseledec 
theorem (Oseledec 1969) ensures that the average in (2.4) can be removed, since for almost 
all initial conditions h = limf+mln R&)/t. 

The Lyapunov exponent h does not characterize the fluctuations in the response of the 
system to a perturbation. A direct calculation of the probability distribution of R is, in 
general, not feasible. A convenient way is to &construct it from its moments. One thus 
introduces the generalized Lyapunov exponents 

1 L(q) = lim -In(Rr(t)q). 
t-tm t 

It is easy to verify that 

(2.5) 

Ingeneral, L(q)  is a convex function of q. Linear behaviour for L(q)  = hq denotes absence 
of intermittency. 
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Knowledge of L(q)  gives information on the lage  fluctuations in R,(f) for finite t ,  as 
one can see by defining the effective Lyapunov exponent yr(z) as 

R&) N exp[y,(r) t ]  for r >> 1. (2.7) 

The trajectories of length t can be classified according to the value of y .  The generalized 
Lyapunov exponents are obtained by averaging over all possible values of y 

(RrW4)  = / dy Pr(Y)eYq' (2.8) 

where P,(y) is the probability density of having a trajectory of length t with an effective 
Lyapunov exponent in the interval [y.  y + dyl. For large t ,  a sensible ansatz for Pt(y)  is 
(Eckmann and Procaccia 1986, Paladin et a1 1986) 

Pt(y) dy = p ( ~ ) e & ( ~ ) ' d y  S(Y) 2 0 (2.9) 

where p(y )  is a smooth function. From the Oseledec theorem it follows that S(y)  = 0 
only for y = A. By inserting (2.9) into (2.Q and performing the integral by saddlepoint 
integration for large t ,  one has 

(Rr(r)q) dy p(y )  e[yq-s(Y)Ir N efL(q) (2.10) 

with 

U q )  = myax[qy - SWl. (2.11) 

The Legendre transform (2.11) shows that each value of q selects a particular class of 
trajectories with y given by 

(2.12) 

By inverting the Legendre transform, the convex envelope of S(y) is obtained from L(q). 
In general situations, the distribution of R for small deviations from the typical value 

exp(ht) is close to a log-normal distribution (Paladin and Vulpiani 1987a) 

where 

1 
p = lim -[((lnR(t))') - (InR(t))'] = lim t[(y:) - ( v ~ ) ~ ] .  

f+m I r+m 

(2.13) 

The moments of the distribution (2.13) give 

1 2  L(q) = ,% + + 7  . (2.14) 
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This form of L(q)  is valid only for small q. The above results can also be stated by saying 
that if L(q)  admits the expansion (2.14) for small q. then the probability distribution for 
small deviations of y from the  typical value is close to a log-normal. 

We stress that when the moments (R,(t)q) grow more than exponentially with q for 
q >> 1, the probability distribution is not uniquely determined by L(q). Nevertheless, 
(2.11) still gives information on the small deviations of y~f rom the typical value A. It 
is worth stressing that the approximation (2.14) for small q yields the parabolic shape 
S(y )  = ( y  - h)Z/2p for y close to A. In some cases, when central limit arguments cannot 
be applied, this approximation can fail (Grassberger et af  1988, Crisanti et al 1992). 

From our considerations, it follows that at a first level, intermittency can be characterized 
by two parameters: A~ and @. The former gives the typical value, the latter measures the 
variance of the y-fluctuations. The ratio @/A = 1 delimits the borderline between weak 
and strong intermittency. The maximum~of P[R( t ) l ,  equation (2.13), is reached for 

so that for h/h =- 1 intermittency gives drastic'corrections to the 'mean field' result obtained 
by estimating the response by the value which maximizes the probability distribution. For 
a discussion on the relevance of intermittency in geophysics see, e.g., Benzi and Carnevale 
(1989). 

In fully developed turbulence  the^ term 'intermittency' is usually used to indicate strong 
fluctuations in the energy dissipation (Monin and Yaglom 1975). It is responsible for the 
corrections to the scaling laws of the classical phenomenological theory of Kolmogorov 
(1941). In turbulent flows there is an energy transfer from large towards small scales where 
dissipation, due to molecular friction, overwhelms the non-linear cascade mechanism. The 
transfer is hierarchical, in the sense that a disturbance on a certain scale receives its energy 
from larger scale disturbances, and transfers it to smaller scale disturbances; At the end of 
the cascade the energy is transformed into heat by molecular friction. 

Assuming a constant rate of nonlinear energy transfer from larger to smaller scales, one 
obtains~ the classical Kolmogorov results. In fact, dimensional analysis suggests that the 
Navier-Stokes equations have singular velocity gradients in the limit of infinite Reynolds 
numbers, i.e. the velocity difference on a scale e =  ltl goes as 8u@) = Iw(z+t )  -zr(z)I - 
eh with h = 113. As a consequence of the uniformity of the energy~ transfer rate, it follows 
that in the inertial range the velocity structure functions scale as 

( ~ u ( t ) q )  o( with rq = 4/3.  (2.16) 

There is much experimental (Anselmet et af  1984) and numerical evidence (Vincent and 
Meneguzzi 1991) for the presence of strong spacetime fluctuations in the energy transfer 
and dissipation. They lead to a whole spectrum of possible singularities h and, in 
particular, to nonlinear behaviour of rq as a function of q. Over the last few years, several 
phenomenological approaches have been proposed to explain these corrections (Mandelbrot 
1975); the fractal description of turbulence has assumed a central role (Parisi and Frisch 
1985, Benzi et al 1984, Paladin and Vulpiani 1987a). 

One could conjecture that the intermittent behaviour must be intimately related to the 
dynamical properties of the time evolution of the velocity field ruled by the Navier-Stokes 
equations. To this goal, from the very beginning of the modern theories of turbulence, simple 
dynamical models have been introduced to capture the main features of the full Navier- 
Stokes equations in terms of a 'small' number of equations (Desnyansky and Novikov 
1974). 
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3. A shell model 

We consider the shell model proposed by Yamada and Ohkitani (1987, 1988), which is 
defined as follows. The Fourier space is divided into N shells. Each shell, denoted by k, 
with n = 1,2,. . . , N, consists of the wavenumbers Ko2" < k < KoZ"", where KO is a 
constant. The velocity difference over a length scale M k;' is given by a complex variable 
u.. The energy is E = E, [u,I2/2 and its power spectrum E(k,J = ( I U ~ ~ ~ ) / ( ~ ~ J .  The 
Navier-Stokes equations are thus replaced by 2N ordinary differential equations 

(: + vk, 2, U. = i(anu~+lu~+z +bnu,*-,u,*+, +c.~~-,u~-~) + f Sn.4 (3.1) 

where v is the viscosity, and f is a forcing, here on the fourth mode. 
There are two main qualitative differences from the Navier-Stokes equations: 
(i) k is a scalar; 
(ii) there are only nearest and next-nearest neighbour interactions among the shells. 
In particular, (i) implies the loss of all the effects due to the geometrical structures. 

Point (ii) is rather sensible, as long as the energy cascade is local in Fourier space, with 
exponentially decreasing interactions among shells. 

The coefficients of the nonlinear terms follow by demanding energy and phase-space 
conservation in the unforced inviscid limit, i.e. v = f = 0 

1 I a, = k, b,, = -2(kn-l) c, = -T(k,,-z) 

61 = bN = cl  = cz = a,+] =aN = 0. (3.2) 

For U = f = 0, (3.1) has an unstable fixed point given by the Kolmogorov law U, o( kn-1'3. 
The time evolution generated by (3.1) exhibits chaotic behaviour on a sQange attractor in 
the 2N-dimensional phase space, with a maximum Lyapunov exponent roughly proportional 
to ~ - l / ~  (see section 5). The Reynolds number can be easily changed over several orders 
of magnitude just by varying the kinematic viscosity v and the number of shells N .  

Numerical integration of (3.1) reveals an energy specmm E ( k )  which scales in the 
inertial range as k-', with an exponent 01 = 1 + {Z Y 1.7 slightly different from the value 
5/3 of the Kolmogorov theory. The exponents Tq are not linear in q ,  and can be fitted by 
the random p-model formula (Benzi et a1 1984) 

tq = q / 3  - 1n2[l - x  + x(f)*-q/3] x = 0.12 (3.3) 

where only two possible kinds of fragmentation are assumed in the cascade process: either 
vorticity sheets, with probability x ,  or space filling disturbances, as in the Kolmogorov 
theory, with probability I - - x .  The value x = 0.12 is very close to x = 0.125 used to fit 
the experimental data of Anselmet et al (1984). The intermittency of the energy dissipation 
exhibited by the model is consistent with the multifractal approach. 

The corrections to the Kolmogorov predictions can be connected to the temporal 
intermittency in the dynamical evolution, since the energy bursts are observed to interrupt 
quiescent laminar periods, with a corresponding increase in the effective Lyapunov exponent. 
A solution of (3.1) spends most of the time in the laminar phase where energy dissipation 
E = v E, ki1u,(t)[2 is lower than the average value Z. In the same time, the total energy 
E( t )  = $E,, lu,(t)lz of the system slowly increases up to the arrival of a sudden burst. At 
this point,'there is a regime of very high dissipation ( E  >> F) with a fast energy decrease. 
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In the plane E ,  E ,  one observes ‘cycles’ of slow energy charge and fast discharge around 
the Kolmogorov fixed point z, 2. During a cycle there are small variations in the energy 
while E changes over several orders of magnitude. 

For our purposes, it is more important to analyse the behaviour in the tangent space 
which describes the growth of small perturbations. In the laminar phase, the eigenvector 
associated with the maximum Lyapunov exponent spreads around the forced wavenumber 
and over the whole inertial range, while in the chaotic regime it concentrates on the 
dissipative~shells (Jensen et al 1991). One thus has a localization of the largest instability 
on the dissipative scales with consequent excitation of the disturbance at large wavenumbers 
during simultaneous chaotic and energy bursts. 

In the rest of the paper, we shall analyse in detail the consequences of the above scenario 
for the growth of a disturbance and estimating the predictability time. 

4. The hut tedy effect: inverse cascade of perturbations 

As briefly discussed in the introduction, the sensitive dependence on initial conditions 
makes long-term forecasting impossible. For example, Ruelle (1979) remarked that thermal 
fluctuations in the atmosphere produce observable changes on a scale of centimetres after 
only one minute. One thus expects that after one or two weeks, the earth‘s atmospheric 
circulation would be unpredictable, even if the exact evolution equations were known. This 
is the so-called buttefly effect, after the words of Lorenz: a butterfly moving its wings over 
Brazil might cause the formation of a tornado over Texas. Here we estimate the predictability 
times using the shell model introduced in the previous section. 

The state of the shell model at a time f will be denoted by u(t) = [ u l ( t ) ,  . .., un(t)}. 
We work in the regime of fully developed turbulence, Re > lo5. At a certain time t a 
perturbed state d ( t )  is produced by adding a small increment E to the velocity component 
in some of the shells, and the distance between the two trajectories is defined as 

D(r )  = Iu(t + 5 )  -,U’@ +?)I. (4.1) 

If the evolution is chaotic D ( r )  grows exponentially in time, i.e. 

(In D ( r ) )  = A r for r >> 1 (4.2) 

where the average is over several perturbations. 
To study the buttefly effect we perturb the model at high wavenumbers, close to the 

dissipative cut-off given by the Kolmogorov length. To gain more insight into’ the growth 
of the disturbance, we introduce the difference on the nth shell at a time t of the two fields 

ISu,(r)l2= lu.(t+,r) -u:,(t+5)12. (4.3) 

The exponential growth of 16u,(e)IZ is triggered by a large energy burst localized  at the 
small length scales and associated with a sharp ,increase in the instantaneous Lyapunov 
exponent. After such a burst, the value of 16u,(r)lZ increases with t at smaller and smaller 
k,, so that the initid disturbance localized on small scales propagates towards lower k, by 
a sort of inverse cascade, as shown in figure I(a). The disturbance eventually reaches the 
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c - 

Figure 1. Plot of In ISu.(r)lz as a function of n for different values of T, for a model with 
27 shells, f = 5(1 + i) x W3, KO = 0.05, and Re = 2 x IO9. In (a)  the perturbation at 
r = 0 is performed on the shell n = 23, with ISu,(O)l= IO-* and ISu.(O)l= 0 for n # 23 as 
shown by the vertical line. The following three curves are calculated with time interval 0.2 in 
T and the rcmaining curves with time interval 0.4. Note a rather big jump behueen the fourth 
and the fifth curve which is due to the occmnce  of an energy dissipation burst at that time. 
In (b) the perturbation at T = 0 is performed on large scale (the shell n = S )  as indicated by 
the vertical line. The time interval between the curves are the same as in (a). The disturbance 
becomes small scale before the exponential growth starts. The broken lines show the scaling 
law 1Su.12 -- k,“/’ of the Kolmogorov theory. 

beginning of the inertial range affecting the flow at large scales: the ‘buttefiy’ disturbance 
has gown to macroscopic scales. 

If the disturbance is not initially localized on the Kolmogorov scale, we do not find an 
exponential growth of I S U . ( T ) [ ~  for any shell k., until the disturbance has spread all the 
way down to the small (dissipative) scales. The time needed by this ‘precursor’ disturbance 
to move from small to large wavenumbers is very fast, of the order of A-I. After this time 
interval, the exponential growth is again triggered by a chaotic burst localized on large k,, 
see figure I@), leading to the inverse cascade previously discussed for figure I@). In other 
words the butterfly effect always stems from a small scale close to the dissipative cut-off 
even when the perturbation i s  performed on a large scale. 

. 
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5. Energy and dynamical intermittency 

In this section we discuss the relation between the multifractality of energy dissipation and 
dynamical intermittency on the growth of a disturbance in the velocity field v(z) (Crisanti 
eta1 1993). 

 in three-dimensional fully developed turbulence, the maximum Lyapunov exponent 
should be roughly proportional to the inverse of the smallest characteristic time of the 
system, the turnover time r of eddies of the size of the Kolmogorov length q. We can 
iniroduce, in terms of the spatial average of the energy dissipation F and of the typical 
large length scale of the system L, the corresponding typical velocity V = and 
time TO = L / V  = (L2m'l3.  The turnover time of an eddy of size'e is, by dimensional 
counting, 

where h is the Holder exponent of the velocity difference in the eddy, 

U(') = IV(S + T )  - V(S)I - v eh (5.2) 

and e = r / L  is the non-dimensional scaling parameter. The nonlinear transfer of energy is 
stopped at the Kolmogorov scale q where viscosity U is able to compete with the convective 
term, U - q ~ ( q ) .  It follows that the viscous cut-off vanishes as a power of the Reynolds 
number Re = V L / u  (Paladin and Vulpiani 1987b), 

q(h) - LRe-"('+h' . (5.3) 

These dimensional relations imply that the maximum Lyapunov exponent should scale with 
Re as 

(5.4) 

since it should be proportional to the shortest characteristic time of the system, i.e. the 
tumover time of the smallest eddy of size q. In the Kolmogorov theory h = 113 for all 
space points, so that CY = 112, as first pointed out by Ruelle (1979). 

The presence of quiescent quasi-laminar periods should change the chaotic features of 
the fluid  flow. The intermittency of energy dissipation can be described by introducing a 
s p e c m  of singularities h. In the multifractal approach, the probability that the velocity 
difference scales with an exponent h is assumed to be 

Pe(h) - e3-D(h) (5.5) 

where the function D(h) is given by the Legendre transform of the velocity struc~ture 
exponent defined in (2.16): 

&, = mp[hq- D(h) + 31. (5.6) 
~. 

Multifractality also implies the existence of a spectrum of viscous cut-offs, since each 
h selects a different damping scale according to (5.3), and hence a spectrum of turnover 
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times. To obtain the maximum Lyapunov exponent, we have to integrate r(h)-', given by 
(5.1) at the scale 1 = q(h)/L, over the h-distribution P&): 

From (5.3) the viscous cut-off vanishes in the limit Re -+ 00 and the integral can be 
estimated by the saddle-point method, 

D(h)-Z-h [ l + h  
with a=" 

k 
A - -  Reu 

To 
(5.8) 

The value of a depends on D(h). By using the function D(h) obtained by fitting the 
exponents cq with the random beta model (3.3) we find (Y = 0.459.. ., slightly smaller than 
the Ruelle prediction a = 0.5. 

Re 

Figure 2. The Lyapunov exponent, .L (diamonds) and p (crosses), BS a function of the Reynolds 
numbers from a shell model calculation with N = 27 shells, f = 5(l+i) x lo-) and KO = 0.05. 
The broken line is the multifncll prediction A - RP with m = 0.459, where the function D(h) 
is given by the random beta model fit of the tp exponents. The full line indicates @ - Re' 
with w = 0.8. 

In figure 2 it is shown the Lyapunov exponent as a function of the Reynolds number for 
the shell model with N = 27 shells. The different values of Re are obtained by changing the 
value of the viscosity U. The correction to the Ruelle prediction A - Re'/' is well evident 
and agrees with (5.8). The variance p of the finite-time fluctuations is also reported. We 
remember that A and /I give the main characterization of the distribution of the effective 
Lyapunov exponent, and that the value g./A = 1 separates weak from strong intermittency. 

The numerical data show that the variance diverges as 

p(Re)  - ReW (5.9) 

with w = 0.8. The variation in the fluctuations of the effective Lyapunov exponent can be 
computed from the multifractal specmm of r(h)-2. Noting that 

(5.10) 
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an explicit calculation leads to 

((yo@ + t') - A) (yo(t) - A).) dt' - ((YO - AI2) lm C(t') dt' (5.1 1) .-lW 
where C(t') is the normalized coirelation function of the effective Lyapunov exponent 

c(t') ((Vo(t) - A) (vo(t + t') - A) ) l ( (Yo ( t )  -A)') (5.12) 

which has the same qualitative behaviour of the energy dissipation correlation function 
(Jensen et al 1991). We define the characteristic time 

tc = Jdm C(t') dt' -  TOR^-^ (5.13) 

which is assumed to vanish as a power of Re. The quantity ((yo@) -A)') can be estimated 
by repeating the arguments used for A, so that 

The result y = 1 is model independent, since (&-Re?, where the spatial average of the 
energy dissipation density ? is a finite quantity independent of Re. The fact that (y,") >> A2 
at high Re implies 

L p * ( ( y o ) f c = - R e i U  2 

To 
with w = 1 - z. In the shell model this relation is satisfied with z Y 0.2. 

We stress that in the absence of intermittency one may expect that tc - A-' , and thus 
z = 112. As a consequence, z r 0.2 indicates that the presence of quiescent periods in the 
turbulent activity is much more relevant for the decay rate of time correlations than for the 
Lyapunov exponent. 

Although it is sensible to expect w > 112 in real turbulent fluids, we cannot ignore the 
fact~that w N 0.8 could be due to the particular form of the time correlations in the shell 
model. 

The basic qualitative feature of these results is just the dynamical iounterpart of the 
multifractality of energy dissipation in three-dimensional space. In generic chaotic systems 
a lower bound to tc is given by A-].  It follows that w > 1/2 and w =- 01, implying that 
p /A  diverges as Re + CO, and, hence, dynamical intermittency occurs. 

~. 

6. Statistics of T and its relation with intermittency 

The predictability time for the shell model is defined as follows. Consider two initial 
realizations U and U', at time t = 0 

Uh(0) = U,(O) +Su,(O) 

with Su,(O) # 0 only for n = n*, n* + 1 where n* corresponds to the Kolmogorov length. 
The predictability time T is defined as the maximum time t such that 

(6.1) 16U4!t)I' + 16U5(t)12 < 6". 
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By changing the initial condition, e.g. by taking the same trajectory at different times, 
the above computation can be repeated msny times and the probability distribution of T 
obtained. The time T is not constant but strongly dependent on the degree of chaos: if the 
system undergoes an energy burst, T is very short. On the other hand, if the system is in 
a laminar period, T can be very large. Figure 3 shows the probability dishibution function 
(PDF) of T for two different values of Re.  Ai Re N lo6 we observe a rather peaked PDF 
with an almost Gaussian shape. For larger values of Re (Re Y 2 x lo9) the distribution 
acquires an exponential tail, indicating the possibility of large excursions in the value of T, 
depending on whether the system is in a turbulent or in a purely laminar period. 

F i y r e 3 .  Rescaled probability distribution functions PDF ofthe predictability time T for the shell 
model: a P ( T )  against (T  - (T) ) /a  for (a): Re = lo6 and (b) Re = 2 x IO9. The respective 
avenge values are ( T )  = 84.0.6.32 and the standard deviations U = [((T - (T))*) ] lP  are 222 
and 3.16, respectively. The full c u m  is the standard Gaussian. 

Furthermore, the typical predictability time T,, i.e. the value of T where the  reaches 
it maximum, is very dependent on the Lyapunov exponent and hence on the Reynolds 
number. In the shell model, the typical predictability time decreases as a power of Re, and 
at increasing Re the occurrence of large values of (T - Tt)/Tt is more and more likely. 

We want to stress that many features of the above scenario do not depend on the values 
of the threshold 8,-, the value of the perturbation at the initial time and the precise definition 
of T, e.g. instead of using (6.11, we can define T as the maximum time such that 

ISU4l2 < &U. 

The gross features of the probability distributions shown in figure 3 do not depend on the 
particular dynamical system considered but only on the degree of intermittency measured 
by p/A: when p /A  >> 1 the probability distribution of the predictability time has a long 
exponential tail, while for p / A  < 1 it is very peaked. A long exponential tail also appears 
in the Lorentz model with r slightly larger than r, Y 166.07, or in the Pomeau-Manneville 
map (Pomeau and Manneville 1980), near the intermittent transition, as @/A increases, see 
figure 4. 

It seems reasonable to conclude that the mechanism for the occurrence of exponential 
tails is not an artifact of the shell model, but rather a robust feature of highly intermittent 
systems. A simple argument shows the relation between the PDF of T and the fluctuations 
of the effective Lyapunov exponent y .  As a first rough approximation we can assume that 
(Fujisaka 1983, Benzi et a1 198.5) 

(6.2) 

~ ~ 

In R(t) = A t  + f i w ( t )  
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( b )  

Figure 4. Rescaled probability distribution functions PDF of the predictability time T for the 
Lorenz model: U P(T) against (T - (T))/a. In (a)  I = 28 and &/A 2 5 x In (b) 
r = 166.3 and &/A = 3.3. The average values are: (T) = 10.84, 8.24 and U = 1.77.4.44. 
respectively. The broken curve is the standard~Gaussian. 

where ~ ( t )  is a Wiener process with w(0) = 0 and 

{ ~ ( t ) )  = 0 (w( t )  w(t’))  = minut, t‘] .  

By this approximation the predictabiIity problem is reduced to a first exit problem: T is the 
largest time such that 

f i w W  < ln(Jm,/W -At. (6.3) 

This is a standard problem in stochastic process theory, whose solution (Burgers 1974) gives 
the PDF of T :  

For A = 0 the PDF is normalized. For A > 0 one has a non-zero probability that (6.3) holds 
at any time, this probability is ~ 1 -  exp(-Wln(S,,,/Go)/p). 

For small value of p / A  the PDF is almost Gaussian and the mean value of T is close to 
the most probable value T, given by the maxim& of (6.4) 

(6.5) 
1 
A 

& Y - ln(6,,/60). 

In contrast for p / h  >> 1 the PDF exhibits an asymmetric ‘triangular shape’ and 

In the approximation (6.2) one neglects correlations between y,(O) - A  and y,,(O) - h 
for t # t’. This is reasonable only for times much larger than A-’. Since ln(8-/&) is 
not large, T/A cannot be too large and the previous argument is not very accurate. The 
qualitative behaviour predicted by the approximation (6.2),is, however, confirmed both in 
the shell model and the Lorenz system. 
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7. Classical predictability approach in turbulence 

The first attempt to estimate T in  turbulence was due to Lorenz (1969), see also LiIIy 
(1973), based on physical arguments, and to Leith and Kraichnan (1972), based on closure 
approximations. The basic ingredients of the Lorenz approach are the following. The time 
r ( k )  for a perturbation at wavenumber 2k to induce a complete uncertainty on the velocity 
field on the wavenumber k ,  is assumed to be proportional to the typical eddy turnover time 
at scale k:  

where vk is the typical velocity difference at scale I l k  
w 

U;- E(k)dk  (7.2) 

In the Kolmogorov theory, E f k )  - k - 5 p  and r ( k )  - k-'!'. The predictability time for an 
uncertainty to propagate from the Kolmogorov scale q - ki' to the scale of the energy 
containing eddies LO - k;', is given by 

N 
T N C r ( 2 " k K )  (7.3) 

where kK - ko and N = In2(kK/ko) - In Re. From (7.1), (7.2) and (7.3) one has 

Closure approximations, where one still uses dimensional arguments, give the same results. 
Equation (7.4) gives T independent of the Reynolds number. This result does not 

change by taking into account the correction to the scaling due to intermittency of the 
energy dissipation. 

In the above arguments many characteristic times are involved so that (7.4) strongly 
depends on the physical mechanism for the inverse cascade of the perturbation. 

Our results are different, only one characteristic time, the eddy turnover time at 
the Kolmogorov scale, is involved. This leads, neglecting the intermittency effects, to 
T - Re-'fl ,  and hence a strong dependence on the Reynolds number. 

One may be tempted to conclude that this is an artifact of the shell model since, on 
physical grounds, it could seem rather stzange that predictability on a large scale is related 
to the properties of the Kolmogorov scale. However, recent direct simulations (Kida and 
Ohkitani 1992) for three-dimensional turbulence with 340' modes, gives a scenario similar 
to that observed in the shell model. In fact, although the energy is concentrated on a large 
scale and entropy on a small scale, Kida and Ohkitani observed that the exponential rate 
for the growth of energy and entropy disturbance are the same and given by the Lyapunov 
exponent. 

We close this section with a short remark. In our analysis, as well as in the classical 
approach of Lorenz, Lilly, Leith and Kraichnan, one considers the effects of a perturbation 
on a small scale on the field at a large scale. On the other hand, even for very high 
Reynolds number, there can exist well defined coherent structures, e.g. vortex tubes, which 
move while roughly maintaining their shape. In this case, if the interest is only in some 
qualitative behaviour, one should reformulate the problem of predictability. For example, a 
reasonable question is the prediction of the centre and the orientation of the vortex tubes. In 
this case one could hope to have a long predictability time. Of course, this problem cannot 
be studied within the shell model, where all the spatial structures are neglected. 
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8. Predictability for passive scalars 

We conclude by discussing the problem of predictability for passive scalars 8 governed by 
the evolution equation 

at8 + V .  V B  = DAB + S (8.1) 

where S is an external forcing. Now we have to consider the evolution of two different 
realizations of the velocities and the scalar fields Y = (6,e) and Y' = (w', 8') such that at 
t = 0 the Y N Y'. As above, the difference at r = 0 is taken to be small scale. According 
to section 6 we candefine two times, TU and T', for the predictability of velocityand scalar 
at large scale. 

Following the ideas of section 3 a shell model can be introduced to describe the 
behaviour of a temperature field passively advected by a velocity field (Jensen et al 1992). 
The equations for the velocity are those described in section 3, equations (3.1) and (3.2). 
In a similar way, i.e. by projecting (8.1) on the shells in the Fourier space, we obtain for 
the passive scalar 

(: + Dk:) 0, = iIe, (u~ - ,@~+,  - u:t16':-l) + g, (u~..,B:-, + &0;-2) 

+ hn + &zQ:+~)l+ S&,4 (8.2) 

where 8, ace complex variables and S is the external forcing, here on the fourth mode. The 
conservation of phase space for U = D = f = S = 0 is automatically satisfied by the 
absence of diagonal terms proportional to U,, 8, on the right-hand side of (3.1) and (8.2). 
The coefficients of the nonlinear terms follow from demanding the conservation of E, 18, l 2  
in the absence of forcing and molecular diffusion, i.e. S = D = 0. This leads to a possible 
choice 

In the unforced, inviscid limit, i.e. U = D = f = S = 0, equations (3.1) and (8.2) have 
an unstable fixed point given by the Obukhov-Corrsin scaling U, - B,, - ki1'3. The time 
evolution of the dissipative system (3.1) and (8.2) is chaotic and confined to a shange 
attractor in the 4N-dimensional phase space. 

Equations (3.1) and (8.2) ace integrated numerically. For the sake of simplicity, we 
study only the case of the Prandtl number Pr = u / D  = 1. At time t = 0, we perturb the 
system on small scales, by imposing 

u;(o) = u,(o) +sU,(o) e;co) = e,(o) + S M O )  

where Su.(O) # 0 and SB,(O) # 0 only for II = n', n* + 1 and n* corresponds to the 
Kolmogorov length. The time Tu is defined as the maximum time such that 

1 6 ~ 4 1 '  + ISUSI' Am, 

and, similarly, T8 is the maximum time such that 

iSe4i2 + ISM' < amax. 
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Note that if Su(0) = 0 then IS0(t)l does not grow since the equation for 0 is linear. On the 
other hand if Su(0) # 0 one cin have exponential growth for I80(t)l. 

In our numerical simulations we considered the case S0,(0) = Su.(O). However, the 
results are not very different in the case S0,(0) = 0 and Su,(O) # 0. For 86',(t) one has an 
inverse cascade and a scenario similar to that one of the velocity discussed in section 4. 

The PDF of T o  is similar to that of TU, i.e. it is sharply peaked at relatively small Re and 
with long exponential tails at large Re. We can define the typical exponential growth rate of 
the temperature perturbation, ( l / T B ) ,  the 'Lagrangian Lyapunov exponent', and ( l / T u )  the 
'Eulerian Lyapunov exponent' (Crisanti et al 1991). The predictability of the temperature 
is observed to be shorter than the predictability of the velocity fields, e.g. one has 

(l/TO) > (l/TU). 

Moreover, T o  is often much larger than Tu, see figure 5. Large values of Tu,  corresponding 
to the laminar phase for the velocity, can coexist with T o  close to the typical values. 

T" 

Figure 5. T6 againat Tu for the shell model with '21 shells, Re = IO', S = f = 5(1 +i) x 
and KO = 0.05. 

This phenomenon is related to Lagrangian chaos (Aref 1984, Crisanti eta! 1991), and 
may have some relevance in practical applications, e.g. weather forecasting. In the limit of 
D = S = 0, equation (8.1) is strictly related to the motion of test particles which evolve, 
driven by the flow, according to the equation 

x = v(z, f). (8.4) 

Introducing the formal evoiution operator of (8.4), 

z(t) = S' z(0) 

0(z, t )  can be written as 



~~ ~ .. . 
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where &(z) = e(=, t = 0). It is well known that (8.4) can exhibit chaotic behaviour, even 
in the absence of Eulerian turbulence. 

Let us consider the evolution of two passive scalars 0 and 8' driven by two slightly 
different velocity fields w and w'. From (8.5) it follows that even if the distance Iw - zr'l 
does not grows, i.e. the field is not chaotic, 18 -8'1 can grows exponentially in time if (8.4) 
is chaotic. 

In the case of turbulent velocity fields it is not easy to understand the behaviour of 
a passive scalar in the inertial range. This is due to the non-hivial correlations between 
energy and passive scalar dissipation. See Jensen er a! (1992) for a discussion on this point. 
This makes it difficult to repeat the argument of section 5 for the Lagrangian Lyapunov 
exponent 
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